The basics of
Software Quality
Control
A guideline

for reviewing and testing
a software system

Willem van den Biggelaar

PROCESS VISION
KONINGSKRUIS 1

5081 XM HILVARENBEEK
TEL: 0031-(0)13 5053526

WEB: WWW.PROCESSVISION.NL
EMAIL: INFO@PROCESSVISION.NL

The Basics of Software Quality Control version: 11

Foreword

This paper gives the basics of software quality control. First it will explain what
software quality control is.

It will give in a nutshell what reviewing is and how to use it. It will explain the V-
model, the several test phases and the deliverables of the test phases. Test methods
are discussed and test tooling is briefly touched. If possible, metrics are given on
the several subjects.

@ The light bulbs in this document indicate useful practical tips.
¥
E

© Process Vision 2007 All rights reserved
Page 2 of 46

The Basics of Software Quality Control

version: 11

Definitions & acronyms

Audit

Bug
Code coverage

Debugging

Defect
Driver

End-customer

Failure

Functional
requirements

KLOC

Major Defect
Minor Defect
Module

Non functional
requirements

Quality
Assurance

Quality Control

Review

Scenario
(OO term)

SMART
Stub
Target system

Testing

An independent examination of a work product or a set of work
products to assess compliance with processes, specifications,
standards, contractual agreements or other criteria.

A defect

The percentage of the code that has been activated after the exe-
cution of the software application.

Part of development where the programmer of the code checks
the code after bugs (by means of testing or usage) are found by
himself or somebody else.

An instance in which a requirement is not satisfied [Fagan].

Small test program feeding the unit with test data and reporting
test results.

The person who has paid for the system being developed and will
be the owner and user of it.

Malfunction caused by a defect or bug.

All “hard” requirements of a system. The basis functions of the
system. See also “Non functional requirements”.

Kilo Lines Of Code: 1000 lines of code

A defect of which the inspector says it is a major

All non major defects

Smallest part of a software system according the V-model.

All “soft” or so-called quality requirements of a system. E.g. us-
ability, maintainability, compatibility, performance. See also
“Functional requirements”.

Activities that measure the process, identify defects and suggest

improvements. The direct result of these activities is changes to
the process.

Activities that measure the product, identify defects and suggest
improvements. The direct result of these activities is changes to
the product. The output of quality control activities is often input
to quality assurance activities

An evaluation of a document aiming to find defects.

A scenario is an instance of a use case, and represents a single
path through the use case. Thus, one may construct a scenario
for the main flow through the use case, and other scenarios for
each possible variation of flow through the use case (e.g., trig-
gered by options, error conditions, security breaches, etc.). Sce-
narios may be depicted using sequence diagrams.

Specific, Measurable, Accepted, Realistic and Timely

Dummy routine, simulating lower level software or hardware

The system for which the software under test is meant. For in-
stance the actual X-ray system.

The process of finding defects in relation to a set of predeter-
mined criteria or specifications. The purpose is not to prove that
a system works, but to prove that a system does not work.

© Process Vision 2007 All rights reserved
Page 3 of 46

The Basics of Software Quality Control version: 11

Use Case A goal-oriented set of interactions between external actors and
(OO term) the system under consideration. An actor may be a class of us-
ers, roles users can play, or other systems. A use case is initiated
by a user with a particular goal in mind, and completes success-
fully when that goal is satisfied. It describes the sequence of in-
teractions between actors and the system necessary to deliver the
service that satisfies the goal. The system is treated as a "black
box", and the interactions with system, including system re-
sponses, are as perceived from outside the system.
References
[Hatton] Safer C, Developing software for high integrity and safety critical sys-
tems, Les Hatton, 1999
[Harry] Harry, Mikel. "Six Sigma: The Breakthrough Management Strategy
Revolutionizing the World's Top Corporations.” New York, N.Y. Random
House Publishers, 2000.
[Boehm| Improving Software Productivity, B. Boehm, IEEE Computer, Vol. 20,
NO. 9, 1987
[Gilb] Software Inspection, Tom Gilb & Dorothy Graham, Addison-Wesley,
ISBN 0-201-63181-4
[Fagan] Design and Code inspections to reduce errors in program development
M. Fagan, IBM System Journal volume 15 no 3
[Trew] Demystifying Design for Testability, Tim Trew, Philips Digital Systems
Lab, Redhill
[Cornett] Code coverage analysis, Steve Cornett, Bullseye testing technology

© Process Vision 2007 All rights reserved
Page 4 of 46

The Basics of Software Quality Control version: 11

Table of Contents

1. INTRODUCTION 3

1.1 WHATIS QUALITY CONTROL?.......coevevitiueeeeaeereeeeseteseteseesesssessesesesese et sseseasnssesesesesesesesesessenssnsesesesesesesesennees 3
LIl DEDUZZING. c..ccviiietiiiieiietet ettt ettt ettt e h b e sbe s b e bt et et e e bt sbe et e be s bt sb e eb b e st e sbeebe et et e b e ebeennenbens
1.1.2 Testingceceeuvenee
1.1.3 Quality Control..............

1.3 'WHAT IS DESIGN FOR TESTABILITY?
1.4 WHY QUALITY CONTROL.....
1.5 WHEN TO STOP TESTING?
1.5.1 Stop on Zero fault SOTEWATE?coc.eeiuiiiiiiiieiie ettt ettt et et saeesbe e saeesbeesbeesaneiee 3
1.5.1.1 Mariner 1 Venus probe loses its Way: 1902ccccccciviiiiiiiiiiiiiiiiiiiiiciic e 3
1.5.1.2 Radiation machine kills four people: 1985 to 1987... .
1.5.2 Stop if run OUt Of TESOUITES Teouiiiiiiiieieeiee ettt st st et e .3
1.5.3 Stop 0N SMART CIILEITIAT ..ottt ettt ettt ettt e be e s bt e sbeesbeesbeesbeesbeesaneenee 3
1.53.1 Number of found defects dropped below limit
1.53.2 Percentage of successfully passed test cases reached target.....
1.5.3.3 Requirement coverage reached target.cccceceveevuvvenuenenne. .
1.53.4 Code coverage reaChed tArGeL.coc.ioiiiiiiiiiiiiiiiiiiiic e 3

2. REVIEWING 3

2.1 DEFINITIONuutiieoteieiureeeteeeuseeaeeeessseasssesassesasssesssessssseessssssssssessssesassssssssessssesssssesassessssssesssessssssesssessssseesssens
B € 167N 5 ST RRRR U RTINS
22,1 MAAIN ZOALS c.eeiiitieieeie ettt et ettt bt ea ettt e b ettt h e bbb bt a e bt et eheeae e bbbt bt et e ntens
2.2.2 Positive side effects
2.3 THE ROLES ..eeeuttteetteeittteeteeetteeaeeeeseseasssseaasseaasssesssseesssseesssessssssesseesassssasssesssssessssssassessssssessseesssssesssessssseesssens
2.3.1 PIOCESS TOIES ...uuvvieieiitiiie e ettt e ettt e e et e e ettt e e e et eteee e e etaaaee e eetbeeeseesseaeeeeassaeeeeensbesaeeeasssaeeesssaeessenreeeeans
2.3.2 Productroles.......
2.4 THEPROCESS.............
2.4.1 Submit....ccccoeeiviiiiiiiiiiiieeees
2.4.2 (Optional) Kick-off meeting ...
2.4.3 Find defects...................
2.4.4 Review meeting
245 FOLLOW UP .ttt ettt e ettt s ea e
2.5 GUIDELINES.......0eeeittieittteiiteeeitteeeiteeessseeaesseaessesasaeeeseeassaesssssesssesseesassssasssessnsssassseeassesaesssesnsessnsssensseeessseesnseeas
2.6 HINTS & TIPS
2.0.1 Pre-reVIEW QOCUIMENLS.cccuvviiiieeiiieeeeeiieeeeeecteeeeeeeteeeeeetaaeeeeetbeeeaeeeaseseeeessaeseeeabeseeeeassaeeesissseeseennrreeeans

2.6.2 DEfiNe VIEWPOINLSoueiiiiiiiiiiiiitiitiiiete ettt sttt sttt st et s ene e
2.6.3 Collect review logs before review meeting....
2.6.4 Sample 1arge dOCUMEILScoiieriiiiiiiiieiieeiie ettt et e sb e st e st e st e saeesbeesaeeeaee
2.6.5 Log typos defects on hard copy of document
2.6.6 Only discuss majors during the MEETINEZccueriiiiiiiiriirieetee ettt ettt s e e sbeesaneaee
2.6.7 Verify MaJOrs ONLYcouiiiiiiiiiieeeiteette ettt et be et e s bt e s bt e saeesbeesbeesbeesbeesaneenee
2T METRIC ...ttt bbb e
3. TESTING 3
3.1 THE V-MODEL ...uiiiiiiiiicci ettt bbbt
3.2 TESTPROCESS
3.2.1 Define test organisation
3.2.1.1 Integration & Test plan.....
3.2.2 RISK DASEA LESLIIE «..veueieniieiieiiieeiie ettt ettt ettt ettt ettt ettt st e st st st e be e bt e sbeesbeesbeesbeesbeesaneenee
323 DEEINE TESS ..ttt ettt s s e b e sttt e h et ae e e bt er e st eane b eane
3.23.1 Requirements
3.23.2 Test/Integration SPECIfICAtION.cciiiiiiiiiiiiiiiici e 3
3204 EXECULE TOSES ..euveiiiieiiiiietteeetet ettt ettt ettt et st s st et b et eb e e b s e b e er e eae e b et
3.24.1 Testlog..........

3.2.5 Report Results

© Process Vision 2007 All rights reserved

Page 5 of 46

The Basics of Software Quality Control version: 11

3.2.5.1 TOSE T@POIT . cuueeueeniietteiteite ettt ettt et e e et e e eat e et s e e abesat e eat e e st e ebeesab e eb e e e bt e b et sas e bt e e atesbe e sh e e bt e eheesbe e bt e ebeenbeeaes 3

3.2.5.2 Metric

3.3 TEST PHASES ...utttiiiieetteieeeetteeeeeeeteeeeeeeetaae e e eetaeeeeeeesaeaeeeassaeeeeetsaesaaaessesseesassaeeeeasasseaeesassssseesssseeseensseeeeeanrees -...3

33.1
332
333
334
335
3.3.6
3.3.7

AALCCEPLANICE TESE ..ottt et ettt e bt e s bt e s bt e seteeb e e sbeeeb bt sheeehe e beeea bt es bt e abeeab e eabesabe e be e bt e nbeenbeesaeas 3
System test
SYSEM INEEETALION LEST...c.etiutieitietietiettet ettt ettt ettt e st esb et e bt bt e st e s et et e e e be e bt e beenbeesaees
UBE EEST .ttt sttt ettt ettt s st et ea et e be bbbt ess e sa e sae e b n et eb e e e e b s heeaeenneanes
UNIt INEEZIATION EESEviitiiiieiieetiet ettt ettt sttt ettt ettt et sb e bt e sbeesaees
IMOAUIE TESE ...ttt et s sttt bt et e sb e e
REGIESSION LESE .. cueveeiietirieeiietcte ettt ettt eb et st s bttt et sbe et e be b e nbeebeennenees

3.4 AUTOMATIC TESTING ...ceeeiuuvieeieieeeeeeeeiteeeeeeiueeeeeesaeesseeesseeessesaaeeseeessseseeaasaseeesesssaseseeaaesseeeasesseessisaaeessenareeeann
3.5 TEST METHODScccitttteeeittteeeeeeiureeeeeeesseeeeetaaeeeeeetteeseeeasssseeeessteeeeeastsssseaassaeeeassaeseeaanssseseaassseeesessaeeesannsreseann

35.1
352
353
35.4

Equivalence partitioning
Boundary value analysis
SCOMATIO +. .ttt ettt et h bbb et e e bt e ae e s et a e bt eb e e e e s b e e bt e bt eb b e et e saeeae et e b e bt ebe e e e nbens
State transition testing...

3.5.5 EITOT QUESSINGcuiiiieiiiiieiicteietttctet ettt ettt st s st b bt eb e e e b sae b neeneeresaeeanennenne
3.5.6 Test attributes for non-functional TEQUITEMENLSc.eiveuiruirieiiiiieieiee et
3.5.6.1 Capability......ccocoooviiiiiiiiiiiiiiice
3.5.6.2 Stability.....cccccovveinnee
3.5.6.3 Resistance to failure..
3.5.64 Compatibility
3.5.60.5 TRIOUGNPUL c..ooiiiiiiiiii e
4. APPENDIX A: MORE HISTORICAL SOFTWARE FAILURES 3
4.1.1.1 AT&T long distance service fails: 1990ccooiviiiiiiiiiiiii e 3
4.1.1.2 Patriot missile misses: 1991 .23
4.1.1.3 Pentium chip fails math test: 1994 ..o 3
4.1.1.4 New Denver airport misses its Opening: 1995..........ccoiiriiiiiiiiiieeteeee ettt enene 3
4.1.1.5 Deregulation of California utilities has to wait: 199823
4.1.1.6 ATIANE 5, JUNE 19906 ...ttt e e ettt e e e ettt e e et e eeessaaeeesseaataeeesasnnnteesessnaseeessnataaeesennnes 3
5. APPENDIX B: CODE COVERAGE TOOL EXAMPLES 3
6. APPENDIX C: REQUIREMENTS MANAGEMENT TOOLS 3

© Process Vision 2007 All rights reserved
Page 6 of 46

The Basics of Software Quality Control version: 11

1. INTRODUCTION

1.1 What is Quality Control?

In this course we are going to talk about Software Quality Control. To find out what
that is, let’s do some history first.

1.1.1 Debugging

Until the early 1970 most software development organizations had not clearly dif-
ferentiated between testing and debugging. Life was simple, a system was built on
the end-customer’s wishes. Next, the end-customer used it and the programmer
removed the found bugs on the fly.

1.1.2 Testing

After this chaotic period, one started to build more complex systems. The need
arose to write down the end-customer wishes in the form of so-called requirements.
The system had to obey these requirements and separate testing activities were
born: an activity to find the faults in the system that do not correspond to the re-
quirements. But still there was a big problem: testing was always done at the end of
the cycle: it was finding and correcting bugs afterwards.

1.1.3 Quality Control

Nowadays, systems are that complex that
they can exist of millions line of code. Real
time systems have become huge
applications. They are put together multi-

Di‘ﬁ;‘:d disciplinary: mechanics-, hardware- and
software engineering join forces.

Software And where does it all start? At the

documentation customers requirements! This document is

the first object that needs to be tested.
Testing a document is called Teviewing”
several people (all stakeholders of the
document) read this document and give
comment (detect bugs).

After the requirements, the software
Detected

bugs specifications and designs are reviewed.
Even the code is reviewed.
/\ Finally, the compiled and linked code is

tested. Testing occurs with the focus on one
or more levels (module, unit, sub-system,
system) dependent on the complexity and
size of the application.

A software product

Quality Control

© Process Vision 2007 All rights reserved
Page 7 of 46

The Basics of Software Quality Control version: 11

With quality assurance, the
agreed way of working is checked
against the actual way of working.
For instance, if the project has
planned and agreed that every
A Software new piece of code is subjected to a
Process code review, the quality assur-
eg coding ance officer checks if this indeed
happens. The checking if quality
control is performed as planned is
also part of his job. A helpful in-
strument for the officer is an au-
dit. By means of interviews with
Quallty Assurance project. members he can 'get a
clear picture of what is going on

in the project.

Deviation to
the process

So, the difference between quality control and quality assurance is that the first
checks the product, and the second checks the process.

1.3 What is Design for testability?

Design for testability is the measures the designer of a system takes to increase the
testability of the system. Designing is out of scope of this document but a good arti-
cle about this subject is [Trew].

© Process Vision 2007 All rights reserved
Page 8 of 46

The Basics of Software Quality Control version: 11

1.4 Why Quality Control

Barry Boehm has done some research on this back in 1987 (ref. [Boehm]). He ex-
amined a number of representative software projects and looked at the cost of re-
work in relation to the found defects. In other words: what does a bug cost the pro-
ject (or the company). Below his results are given.

If a defect in a requirement document was found in the detailed design phase, the
costs would have been 70 times more than when it was found during the require-
ments document review. As soon as the product is released (aftercare phase), the
costs are 250 times more.

Relative cost of rework of one found requirements defect

300

n
6]
o

Relative costs
- N
n o
o o
.

—_
o
o

a
o

1

Requirements Global design Detailed design Code&Unit test Integration & System Aftercare
test

Development phase

Figure 1 Relative cost of rework

A real life example:

During development of a digital audio player marketing forgot to specify the
digital output at the back of the chassis. The defect was found during pro-
duction of the player: in the factory they wanted to assemble the connector
for the output and found that there was no electronic connection. It took 1
more month to get this fixed. 20 Men had to work the whole month to fix this
problem.

What was the origin of the problem here? The factory people were not invited
for the review of the requirements. If they were invited, they would certainly
have triggered on this fault because a chassis of this type of player has by
default such an output.

© Process Vision 2007 All rights reserved
Page 9 of 46

The Basics of Software Quality Control version: 11

1.5 When to stop testing?

Too little testing is a sin, (oo much instant death

1.5.1 Stop on zero fault software?

Is testing finished when all the bugs in the system are found? How many bugs are

there in a product? The answer to that question is unknown because it is impossi-

ble to find them all.

[Hatton] says:

e Safety systems (aero-planes, nuclear plants, medical applications) have an aver-
age of 1 error / 1000 lines of code (KLOC) after release.

* A reasonable commercial system has about 3 to 6 errors / KLOC after release.

e A poor system has more than 15 errors / KLOC after release.

However, [Harry] is more optimistic:

e Domestic (U.S.) airline flight fatality rates run at better than six sigma, which
could be interpreted as fewer than 3.4 fatalities per million passengers - that is,
fewer than 0.00034 fatalities per 100 passengers.

e The current average industry runs at four sigma (6210 defects per million op-
portunities).

e Internal Revenue Service phone-in tax advice, runs at roughly two sigma
(308,537 errors per million opportunities). Depending on the exact definition of
defect, this could be interpreted as 30 out of 100 phone calls resulting in erro-
neous tax advice.

History shows a lot of software failures:
© Process Vision 2007 All rights reserved

Page 10 of 46

The Basics of Software Quality Control version: 11

1.5.1.1 Mariner 1 Venus probe loses its way: 1962

A probe launched from Cape Canaveral was set to go to Venus. After takeoff, the unmanned rocket
carrying the probe went off course, and NASA had to blow up the rocket to avoid endangering lives on
earth. NASA later attributed the error to a faulty line of Fortran code. The report stated, "Somehow a
hyphen (“-”) had been dropped from the guidance (besturings) program loaded aboard the computer,
allowing the flawed (foute) signals to command the rocket to veer (koers veranderen) left and nose
down...Suffice it to say, the first U.S. attempt at interplanetary flight failed for want of a hyphen." The
vehicle cost more than $80 million, prompting Arthur C. Clarke to refer to the mission as "the most
expensive hyphen in history."

1.5.1.2 Radiation machine kills four people: 1985 to 1987

Faulty software in a Therac-25 radiation-treatment machine made by Atomic Energy of Canada Lim-
ited (AECL) resulted in several cancer patients receiving lethal overdoses of radiation. Four patients
died. When their families sued, all the cases were settled out of court. A later investigation by inde-
pendent scientists Nancy Leveson and Clark Turner found that accidents occurred even after AECL
thought it had fixed particular bugs. "A lesson to be learned from the Therac-25 story is that focusing
on particular software bugs is not the way to make a safe system," they wrote in their report. "The ba-
sic mistakes here involved poor software-engineering practices and building a machine that relies on
the software for safe operation."

For more historical failures, see appendix A.

1.5.2 Stop if run out of resources?

Developing products is always balancing between 3 major elements: time, money
and quality (including functionality).

s

QL

Figure 2 Balance between quality, budget and time

Many times, there is no balance:

e “We must meet our deadline. Time is running short on us. Can we not skip the
module testing?”

© Process Vision 2007 All rights reserved
Page 11 of 46

The Basics of Software Quality Control version: 11

e “We have no time left to review these documents, just authorize them and start
with the coding. “

e “Is there still budget left to continue testing?”

e “Oh, did we forget the code reviews? Damn, but we had planned it, so that’s
good, isn’t it?”

In many projects, the main reason to stop with quality control is that the money or

the time has run out.

1.5.3 Stop on SMART criteria?

Instead of stopping at the impossible (zero fault software) or stopping for the wrong
reasons (running out of resources), there is a better way: define criteria at the start
of the project. These criteria have to be SMART:

Specific not vague

Measurable quantifiable

Acceptable agreed upon by end-customer and project

Realistic nothing like “the program should contain zero faults”
Timely a timeline must be incorporated

Below examples are given of SMART criteria.

1.5.3.1 Number of found defects dropped below limit

Example: “the system has passed the system test if the number of defects the test
team finds drops below 1 defect per 50 testing hours”.

350

300 +

250 +

200 +

150 +

new defects

100 +

50 +

. ®
0 f f f f f f g ¢

0 50 100 150 200 250 300 350 400 450 500 550
Test Time [hours]

Figure 3 Number of found defects in relation to test time

Testing hours are the effective hours the system is being tested by the test team by
running the tests. Not included are for example

e Hours test software is being installed
e Startup problems on the target system being tackled.

© Process Vision 2007 All rights reserved
Page 12 of 46

The Basics of Software Quality Control version: 11

1.5.3.2 Percentage of successfully passed test cases reached target

Example: “The system is accepted if 95% of all acceptance test cases have passed
successfully. From the other 5%, only minor problem reports may be open. “Suc-
cessfully® means that the logged output from all the tests within the test cases
matches the expected output”.

Be aware: 100% system test case coverage does not mean the system is perfectly
tested on system level. It only means that all test cases have run well. Maybe cer-
tain requirements were forgotten to be covered in test cases! That’s why the next
stopping criterion is also important.

1.5.3.3 Requirement coverage reached target.

Example: “the system is accepted if all “must do” requirements are covered by test
cases. 80% of the “should do” requirements are also covered.

1.5.3.4 Code coverage reached target.

There are several definitions of code coverage. Some examples:
e Statement coverage: each statement has to be executed at least once
e Function coverage: each function has to be executed at least once
e Path coverage: each possible path has to be executed at least once
The article of [Cornett]| gives more definitions and examples.

It is never feasible to try to reach 100% path coverage. An example:
Do (20 times)

Begin
if (a > b)
func_A(a)
else if (a = b)
func_B (b)
else
func_C (c)
End

The above piece of simple pseudo-code already has 320 (= 3486784401) possible
paths.

Examples of feasible targets are

e “The condition/decision code coverage of all user interface modules must
have reached at least 80%. For the other 20%, valid reasons are given for not
covering”.

e The condition/decision code coverage of all low-level hardware interface
modules must have reached at least 75%. For the other 25%, valid reasons
are given for not covering”.

How is a feasible code coverage target calculated?
1. Decide which definition to use.

2. Run a code coverage tool that can give the defined coverage (see appendix B
for a list of commercial tools)

3. Analyze the code and classify them:
a. Code that is covered

b. Code that is not covered but must be covered
© Process Vision 2007 All rights reserved

Page 13 of 46

The Basics of Software Quality Control version: 11

c. Code that is not covered but is not coverable without major effort in
this test phase (test code becomes more than application code).

d. Code that is not covered but must be removed (obsolete! code)
4. With the above classification a target is set for this module

Next the test cases for classification “b” are adapted and the obsolete (classification
“d”) code is removed.

(W) You have to define together with your customer what the criteria are when to
stop testing. Document them in your test plan.

! Applications that exist for several years can contain already a lot of obsolete code!

© Process Vision 2007 All rights reserved
Page 14 of 46

The Basics of Software Quality Control version: 11

1.6 When to stop reviewing?

When do you stop reviewing a document? When all bugs are found? The same an-
swer stands here as for testing: not all bugs will be found.

The question here is: is the document mature enough for the stakeholders? Has for
instance the designer enough information to start with his design if he has read the
input requirements? Can the testers translate the input requirements into test
cases? Sees the end-customer all his user requirements covered in the system re-

quirements? If such questions are answered positive, the document has passed the
review.

© Process Vision 2007 All rights reserved
Page 15 of 46

The Basics of Software Quality Control

2. REVIEWING

Now let’s dive into the first section of quality control: reviewing.

2.1 Definition

A lot of terms are used in companies: inspections, peer reviews, management re-
views, technical reviews, brainstorm and walkthroughs. What one company means
by a walkthrough is in another company an inspection. So bear that in mind when
you join a company. Of course literature tells exactly the differences between all
these terms but that will not help in real life.

The definition present here is:

“Reviewing is an evaluation of a document! aiming to find defects”

2.2 Goals

2.2.1 Main goals

e Detect a maximum of defects in the earliest possible stage of the development.
Defects become progressively more expensive to eliminate if they are deleted in a
later stage of development (efficiency).

¢ Find defects not correct them. Correction is the responsibility of the author.

= Have a stable product to be placed under Configuration Management

» Aim at finding major defects; avoid the 90% minor syndrome (spending 90% of
review time finding minors). But what is a major defect? Again, as with the defi-

nition of reviews, each projects has its own definitions:

= Anything with potentially large downstream cost consequences.

= Anything that does not comply with a functional or non-functional requirement that will be
visible to the end-user.

= Anything that will damage the commercial value of the product.
= Anything that changes external interfaces

The definition presented here is:
“A major defect is major because the inspector says it is a major”

2.2.2 Positive side effects

e Transmit knowledge among reviewers and among reviewers and author
e Enhance overall quality next to locating defects such as
e Usability
e Maintainability
e Testability
e Control and enforce adherence to relevant standards
e Create public support for the product

"In this respect, evaluating software code is also a review: the hardcopy of the code is then the document

© Process Vision 2007 All rights reserved
Page 16 of 46

The Basics of Software Quality Control version: 11

2.3 The roles

A person involved in a review process always has two roles:

1. A process role: moderator, recorder, inspector, commentator, author

2. A product role: principal, consumer, specialist
For instance, an architect that reviews a design can be appointed explicitly modera-
tor (=process role) for that review and is implicitly a principal (=product role) for
that design.

2.3.1 Process roles

Below the review roles in the review team are given:

Moderator Person responsible for the process of the review. Checks compli-
ance of the review to the standard review process. Decides if review
can start. Chairman of the review meeting. Timekeeper of the meet-
ing. Decides on outcome of meeting. Tracks rework down to clo-
sure. Checks the rework. The moderator and author can never be
the same person. The moderator must be well-trained in the review

process.
Recorder Scribe of the review meeting

Inspector Reviewer who must attends the meeting and must give comment.
Verifier Reviewer who checks if all defects are properly solved.
Commentator Reviewer who does not attend the meeting and may give comment
Author Person who delivers the product to be reviewed. The author can

never be the moderator.

2.3.2 Product roles

A design document needs other reviewers than a requirements document. In gen-
eral, a document under review has the following stakeholders:

e Principal(s): person who wrote the higher-level document, e.g. for a module
design specification, the module requirement specification is its higher-level
document. The principal should check if the product under review has per-
formed the correct translation

e Consumer(s): person who needs the product under review as input e.g. for a
module design specification, the module code programmer is a customer.
The consumer should check if the product under review is clear, detailed and
consistent enough for him.

e Specialist(s): person who has specific (technical) knowledge needed for the
document under review, e.g. user interface specialist, a concurrent pro-
grammer specialist. The specialist checks the correctness on his field

© Process Vision 2007 All rights reserved
Page 17 of 46

The Basics of Software Quality Control version: 11

Below some examples of product roles are given:

Document Type Reviewers
Principals Consumer Specialists
Acceptance Test Spec User Requirements author System Test Spec author --
Software Unit Re- Software System Designer Unit interface users --
quirement Spec Functional Requirement Unit Design authors
Spec Author Unit Test Spec authors
Integration Manager
Project Plan Department Manager Project Team Quality Offi-
cer
Code Software Module Design au- | Module Interface users Colleague,
thor C++ Coach

Table 1 “Examples of Product review roles”

2.4 The Process

Higher level
documents

Review Report

Reviewed
product

Product to be
reviewed

Kickoff
meeting

Review

Find defects N
meeting

Follow up

no kickoff

Checklist Review logs

Standards

Figure 4 the review process

2.4.1 Submit
The author together with his team- or project leader defines the review team ac-
cording the process roles and product roles (see previous section).
Next the moderator checks if the product is ready for review:
e ‘Maturity’ of the document: does it not contain too many open issues.

e Are the process and product roles filled by the right people

e If an organization uses static code checkers (e.g. QA-C++, Code Wizard, Can-
tata++, Lint), the output of these tools should be used as input for a code re-
view. The moderator can then check if the code has passed these tools.

© Process Vision 2007 All rights reserved
Page 18 of 46

The Basics of Software Quality Control version: 11

2.4.2 (Optional) Kick-off meeting

Next the moderator organizes a kick-off meeting. This meeting can be skipped if the
inspectors already know the product and know what is expected of them for the re-
view. If the meeting is skipped, the moderator takes care all documents are sent to
the inspectors.

In the meeting, the author hands out the line numbered product under review and
gives a technical briefing of the product. The moderator explains the process and
hands outs the checklists, higher documents and standards. The inspectors leave
the meeting with fully understanding their roles.

2.4.3 Find defects

The inspectors study the product to be reviewed and note their comment on the re-
view log. Optional, the inspectors send their logs back to the moderator a few hours
before the start of the review meeting. The moderator merges all defects into one
defect log (sorted on page/line). He prints out the merged defect log for all reviewers
and brings it with him to the meeting.

2.4.4 Review meeting

The moderator checks if the inspectors have properly prepared the review:
e Are the review logs filled in correctly

e Has the preparation time been enough? It is hard to give figures for preparation
time because it highly depends on
o Maturity of an inspector
o Maturity of the organization
o Type of document
Figure 5 Checking rate optimum gives a metric on how to come to an indication
for the checking rate.

The above check can be done before the meeting, if the moderator has a merged de-
fect log.

The moderator now goes through the document page by page. The inspectors read
their defects and ask for clarifications if some parts of the document are not under-
stood. No discussion on possible solutions takes place. The author reacts on the
questions and asks for clarification if a defect is not understood.

The inspectors decide if a defect is accepted or rejected. There are however compa-
nies that let the author decide: he is end responsible of the quality of the document.
The problem with the latter is, that an author is most of the times under a lot of
time pressure in a project and tends to reject a defect if that costs a lot of update
effort.

At the end of the document, the moderator asks the inspectors if a new review is
needed (maybe the document contains too many defects). If not, the review itself is
accepted otherwise it is rejected and a new review must be planned.

The recorder writes down the following metric on the review report:

e Time spent by everyone on every review step (preparation, kick-off, find defects,
review meeting)

e Number of accepted major defects
e Number of accepted minor defects
e Number of reviewed pages

© Process Vision 2007 All rights reserved
Page 19 of 46

The Basics of Software Quality Control version: 11

e Outcome of the review: accept or reject

2.4.5 Follow up

The author now updates the document according the review logs. The verifier
checks the rework and sends it back to the moderator. The moderator finishes the
review report by signing it and completing the metric:

e Time spent by author and moderator on follow-up step

Finally the author communicates to the project that the document is reviewed.

Next the product must be authorized (releasing the product) and archived.

Finally, the review report together with the review logs are archived as proof that
the product has been officially reviewed.

2.5 Guidelines

e Don’t confuse poor products and poor reviews (process went wrong)
No discussions about solutions in the meeting

Avoid using ‘negative’ words in the meeting

Judge the product, not the author

No more than 7 people in a review meeting

Don’t start with unprepared people

2.6 Hints & tips

2.6.1 Pre-review documents

Before an official review, it is wise to let colleagues check your document when it is
in draft state (especially for new documents or if you are new in the field of exper-
tise).
2.6.2 Define viewpoints
To get certain focus and to save time, viewpoints are defined. Each inspector gets a
special task on which he has to check. Examples of viewpoint are

e Check if product is according standards

e Check on consistency with all high level documents

¢ Check on multi-threading aspects

¢ Check on usability of defined screens
Define these viewpoints before the kick-off meeting.

2.6.3 Collect review logs before review meeting

The review team must hand in the review logs one day before the actual review
meeting takes place. The moderator then merges all defects into one sheet and
sorts them on page/line number. At the review meeting he hands out this merged
list of defects.

Advantages:

e Moderator knows a day before the meeting if everybody has actually pre-
pared the review properly. If not, he can cancel the meeting on beforehand
instead of at the start of the meeting.

e The moderator guides the meeting more easily because he knows exactly who
has found a defect on which page.

© Process Vision 2007 All rights reserved
Page 20 of 46

The Basics of Software Quality Control version: 11

e The recorder has now a very small role. He only writes done accept/reject of
the defects, generated actions and the metric data on the review report.

Disadvantages:

e For many people, writing defects on a review log already is a big step, writing
it electronically is a huge step.

2.6.4 Sample large documents

If a document to be reviewed is 50 pages or more, the method of [Gilb] can be used.
Select for instance 5 pages that together give an impression of the quality of the
document. Review those pages first. If no more than 0.2 majors and 2 minors per
page are found, trust that the other pages have the same quality and accept the
document. If more defects are found, ask the author first to solve the defects found
and let him update also the other 45 pages. Next re-review 5 other pages.

Drawback here is how to find those first 5 pages.
2.6.5 Log typos defects on hard copy of document

You can log typos (misspelling) on the document itself instead of using review log
forms because it’s a more natural way of noting during reading.

Be aware that these scribbles must be readable to the author. Do not allow putting
majors also in the document, majors must be put on the review log form.

Another drawback: a nice checkpoint for the moderator to see if the inspectors have
actually put time into the document is the output on the review log forms.

I have worked in a company where reviewing was not taken very seriously: inspectors came into the
meeting, claiming they had put 2 hours of effort in preparation. During the meeting, you saw them
reading the document as it had been for the first time. They scribbled the defects on the document
during the review. One of the measures we took in that organization was that every defect had to be
logged on a log form and that inspectors who did not have a filled in log form was expelled from the
meeting. It worked, even if it seems a very childish measure.

2.6.6 Only discuss majors during the meeting

If a moderator sees at the beginning of the meeting that a lot of majors are found
(by simply asking the inspectors how many majors they have found), he can decide
to only discuss the majors. By default the minors are then accepted. If the author
has a problem with a minor, he can discuss this off-line with the inspector. The ad-
vantage here is that the meeting will be shorter and there will be a focus on the real
problems.

2.6.7 Verify majors only

When there are many minors to verify, introduce the following rule:
e Always verify majors

e Verify minors by sampling

e Never verify typo’s

© Process Vision 2007 All rights reserved
Page 21 of 46

The Basics of Software Quality Control version: 11

2.7 Metric

The most essential metric are:
e Total time spent on inspecting the document by everybody per review
e Total number of accepted defects found per review
e Total number of inspected pages per review

With the above information, the optimum checking-rate for the organization is cal-
culated. An example follows:

15 — Checking rate
]
12 1= 4« A Review
Defect density (] ’
(defects /page)
9
[I |
0
Wy
- 0]
6 ‘o. mo R
()
,
3 '3 X U
" " 0 0,0 0]
' u.'lo.olo.. ozo.l. o..o...lo 3.|

20 40 60 80 100

Inspection rate (pages/hour)

Figure 5 Checking rate optimum

The optimum lies somewhere on the 5 to 10 pages / hour for this organization.

b

b If metrics are collected, use them to evaluate and improve the process,
otherwise don’t collect them at all!

© Process Vision 2007 All rights reserved
Page 22 of 46

The Basics of Software Quality Control version: 11

3.TESTING

3.1 The V-model

The traditional waterfall model has a disadvantage: testing is put at the end of de-
velopment. That’s why the V-model was invented.

Product
Request

Review
Reports t
Rewer\tn Requirement
Spot Specs
Review
Reports
Review
Reports
Review
Reports

/ Product

Review Test

Reports Reports
Review Test
Reports Reports
Review Test
Reports Reports

Review Test

Reports Reports
Unit Integration Review Test

Specs Reports Reports
Code; Module Review Test
Test Specs Reports Reports

Figure 6 the V-model with its review and test reports

System Design
Specs

Integratior
Specs

Unit
Requirement
Specs

Unit Test
Specs

Unit Design
Specs

The system above is split up in several units. Every unit is split up in several mod-
ules. Dependent on the architecture, more levels can be added or removed. A sim-
ple system may contain 1 or 2 levels. A multi-disciplinary system has in parallel to
the software part, also a hardware and mechanical part.

After the user requirements are mature enough, one can start writing the accep-
tance test specifications and the system requirements in parallel. The acceptance
test cases prove the testability of the user requirements. This mechanism of writing

in parallel the development part en the test part can then be executed for every
level of the V-model.

© Process Vision 2007 All rights reserved
Page 23 of 46

The Basics of Software Quality Control version: 11

3.2 Test process

Create Test
Environment

h 4

Test Software
Test Tools

Test &
Integration
Plan

Requirements

or Designs Test Repor

Product to be
testec

Define test
organisation

Tested product

Define Tests Execute Tests Report Results

h 4

\ 4
Test /
Integration
Specifications

Development

Test Logs

Project Plan

Figure 7 the test process

3.2.1 Define test organisation

As soon as the project has its product or user requirements and starts making its
project plan, the Integration & Test plan can also be written. Combining the Devel-
opment plan and the Integration & Test plan into one document is also possible.

Don’t think that everything has to be defined in detail when starting to write the
plan. Many things can be still unsure or open. State these open issues at the first
page of the plan as a sort of action list. Agree with the customers that these open
issues will be closed on committed dates.

© Process Vision 2007 All rights reserved
Page 24 of 46

The Basics of Software Quality Control version: 11

3.2.1.1 Integration & Test plan

The output of the “Define test organisation”-step is the Integration & Test Plan. The

content of such a plan should at least cover the following:

1. What is the Integration & Test scope? What part of the V-model is covered? E.g.
system tests and unit integration only? Or all the way down the V-model (mod-
ule testing)?

2. How is the test part organized? E.g. separate test teams? Or per development
team one tester, or To who is reported?

3. What are the tasks and responsibilities of the tester(s)? E.g. also reviewing
specifications, integration responsibilities

4. What will be delivered? Which Integration & Test specifications, which test re-
ports.

5. Which resources/tools are needed? E.g. certain test tools but also which human

resources. How many test systems are needed at what point in time and for how

long?

What test strategy will be used? For more information, see 3.2.2.

7. What are the acceptance criteria (or entry criteria) if objects are taken over to be
tested from development teams or from external parties? For instance deliver-
ance of module test reports.

8. When is testing stopped (exit or pass criteria)? What is agreed upon with the
customer?

9. How is the Integration & Test planning (work breakdown structure) in relation to
the projects planning? Activities, milestones and resources.

10.What are the Integration & Test risks and what are the preventive actions? E.g.
target system late available or untrained testers

11.How is regression testing handled?

12.How are problem reports handled?

13.Which test metric is assembled, why are they gathered and how are they used.
For examples, see 3.2.5.2

o

Be sure to make the Integration & Test plan together with the testers. They are the
ones that have to follow the plan. Use for instance several brainstorm sessions to
get the above-mentioned topics sorted out. Don’t fall into the trap of being the Inte-
gration & Test team leader that makes the plan all by himself behind the computer
and assuming that the team will commit to it. Of course the plan must be in line
with the development plan, so be sure to involve the project leader in the whole
process.

© Process Vision 2007 All rights reserved
Page 25 of 46

3.2.2

The Basics of Software Quality Control

version: 11

Risk based testing

It has already has been said before: you cannot test everything in detail, so choices
have to be made. A good technique for that is called ‘risk based testing. The stake-
holders are asked what they see as risks for the system, and the depth of testing is
adapted to those risks.

The technique contains the following steps:

1. Define for each quadrant of the risk matrix the testing methods (see section

2.

3.
4.
5.

3.5 for an explanation of these methods).

stakeholders and put them in a risk table

An example:

Step 1: Risk Matrix Quadrant definition

Technical risks

18
HIGHEST RISK
- Boundary value analysis
- Scenario (basic flow and some Equivalence partitioning
exceptional and error flows) Boundary value analysis
Scenario (basic flow and all excep-
tional and error flows)
State Transition
Error guessing
12
LOWEST RISK
- Error guessing Scenario (basic flow and some
- Scenario (only basic flow) exceptional and error flows)
6

12

Business risks

Figure 8: Test design techniques to be used in the different quadrants of the risk matrix

© Process Vision 2007 All rights reserved

Discuss the technical and business risks per new functionality with the

Give each risk a level (e.g. 1 = low risk, 3 = high risk) in the risk table
Calculate the total score per risk both for technical and business.
Draw the risk matrix from the total score (4 quadrants)

Page 26 of 46

The Basics of Software Quality Control

version: 11

Step 2 - 4: Risk table

Technological risk Market/Business risk
Factor|Com- |Size [Inaccuracy and|3rd party |[New Quality of |Total |User [Patient |Usage Liability |Total
plexity inexperience |involve- |develop- |specifica- |score [impor- [safety [intensity |(financial |score
development |ment ment tions tance damage)
team
Id (Item (new functions)
L jQva 2 | 2 2 3 2 1 12 1 2 1 1 5
2 |Full 3DRA support 2 2 2 2 3 1 12 3 2 3 1 9
3k 3 |2 i 2 3 2 13 | 3 2 3 2 10
4 |UI enhancement 2 2 1 2 2 2 11 2 1 3 1 7
5 |Auto config FSC ACP 1 1 1 2 2 1 8 1 1 1 2 5
6 |QA performance 2 1 1 2 1 1 8 1 1 1 1 4
7 |Rectangular Images 3 2 2 1 2 1 11 3 1 3 1 8
8 [Portrait/Landscape export
1 1 1 1 2 1 7 1 1 3 1 6
9 |MIP 3.1.net 2) 1 2 2 1 10 1 1 2 1 5
10 |Frame selection 2 1 1 2 2 1 9 2 1 2 1 6
11 |File restructure 1 1 1 1 1 1 6 2 1 3 1 7
12 |Redesign monitor LUT 2 1 1 2 2 2 10 3 1 3 1 8
13 |Interoperability 4.1 2 2 1 3 2 1 11 3 1 2 1 7
14 |Archiving annotations 2 1 1 1 2 1 8 2 1 2 1 6
15 |Regression 2 2 1 1 1 1 8 1 1 2 1 5
Table 2: Risk table example
Step 5: Risk Matrix
14 i
|
l
13 | L&
|
|
12 [} | L&
|
|
" ., o7
¢ I
2 |
Brop-n O ================ Lemmmem - e i
g l
9+ @10 }
|
|
s@6) @1 }
l
74 @3 }
|
|
6 @+
4 5 6 7 8 9 10

© Process Vision 2007 All rights reserved

Business risks

Page 27 of 46

The Basics of Software Quality Control version: 11

3.2.3 Define Tests
Let’s first look at the input of the “Define Tests”-step: Requirements.

3.2.3.1 Requirements

Garbage in, garbage out

If requirements are bad, the test cases won’t be good either. How to write good re-
quirements is outside the scope of this book so only a summary will be given here.
Good requirements are:

e Concise Keep it short

e Complete Stand-alone readable and understandable

e Consistent No contradiction with itself or other requirements
e Correct Flawless description of the desired functionality
e Implementation free Specify “what”, not “how”

e Unambiguous Must have one interpretation only

e Verifiable Fit to measure

e Achievable Possible to implement

e Necessary Must add value to the product

e Prioritised For order in implementation and testing

e Unique labelled Uniquely within the product to allow tracing

Requirement coverage

One of the main issues is requirement coverage. If all the test cases are executed,
which part of the requirements is covered? A simple technique to make this cover-
age visible is a traceability matrix. An example is given below.

Req Id Test case Id Comment
URO1 TCO1
URO02 - Not testable, see Problem Report 1253

URO03 TC02
UR04 TCO05, TC6
URO05 To be defined See Open Issue OI004

From the 5 requirements, 1 was found to be not testable, so a problem report was
written for it. For one requirement (UROS5) a test case is not yet written, so an open is-
sue was raised for that.
The technique is simple, but when the number of requirements grows a maintain-
ability problem emerges if these tables are not automatically generated. Nowadays
there are several requirements management tools on the market available (see Ap-
pendix C) that will handle this problem.

© Process Vision 2007 All rights reserved
Page 28 of 46

The Basics of Software Quality Control version: 11

3.2.3.2 Test/Integration specification

The output of the “Define Tests”-step are the Test / Integration Specifications.
The differences between these two types are:
e Test specifications: are the Requirements implemented correctly:

e Check if the system does what it is required to do
e Look at the outside of (part of) the system
e Integration specifications: are the Designs implemented correctly:

e Check interfaces between parts of the system, do they communicate the
way they were designed to communicate?

e Look at the inside of (part) of the system

Content of a Test Specification

The content of a Test Specification should at least cover the following:

1. The traceability matrix (see previous section)

2. Test environment needed: hardware, test software, test tools. Be sure to mention
versions of hard- and software if that’s important. If the test plan covers this, re-
fer to the plan.

3. A description on how to execute the tests: e.g. must it run on the target system,
or can it run in some kind of simulation mode. And if it can be simulated, how
is it done. Must it be done manually, or are tests automated. How long does the
running of the tests last? Can each test be run separately or are there depend-
encies?

4. Which test method (section 3.5) is used for creation of the test cases? A combi-
nation of several test methods is possible.

S. The test cases

a. Each test case must have a unique identification within the document.

b. State the purpose of the test case. Give in a short sentence why this test
case is needed.

c. If a setup is needed for the test case (e.g. reset the system), then state
that also.

d. The central part of the test case consists of a number of actions or tests.
The input that the tester has to give and the expected output of the system
is described. Think about the way it is written down: it must be unambi-
guous and clearly stated. Tester John should perform the same actions
as tester Mary if they execute the test case. This is called “reproducible
execution”.

e. The output must always be measurable. E.g. output on a screen, test re-
sults in a log file, a visible movement of a motor or an update of a data-
base.

Content of an Integration Specification

The content of an Integration specification is almost equal to that of a Test specifi-
cation, the differences are:

¢ The test cases refer to parts of a Design instead of to a Requirement.

e Part of the specification is an Integration scheme showing, which parts of the
system integrate at what moment. See also sections 3.3.3 and 3.3.5.

© Process Vision 2007 All rights reserved
Page 29 of 46

The Basics of Software Quality Control version: 11

If a test specification is to be made from a large requirement document, be sure to
make only 1 or 2 test cases. Let these test cases be checked by several people so
that you know you’re on the right track. Then continue with making all the other
100 test cases.

3.2.4 Execute Tests

The tester will execute the tests on a test system by feeding the system with the in-
put from the test case. He compares the output with the expected output of the test
case. If there is a difference this can be caused by:

e A bug in the test case.

e A bug in the product under test.

During the tests, the tester logs what he is doing. Especially on complex systems
where several testers make use of the same test system, this is essential. Many
costly testing hours are wasted because a tester had left the system in an unknown
state behind.

3.2.4.1 Test log

Outputs of the “Execute tests”-step are test logs. The content should at least cover

the following:

e Name of the tester

e Test date

e Target test machine

e Items tested with software version

e Activities/messages which are relevant for other testers to see, e.g. “system
crashes when using the DICOM application, do NOT use at this moment”.

3.2.5 Report Results

When all tests are executed, the tester must write a report to let the project leader
know that the product has been tested.

3.2.5.1 Test report

The content of such a report must at least cover:

Summary giving opinion of tester to accept this product or not.

Name of the tester

Testing dates

Target test machine

Items tested with software version

Test environment used, if it deviates from the one in the test specifications
List of test cases with the result: Ok or Not Ok

List of problem reports written for the Not Ok’s

© Process Vision 2007 All rights reserved
Page 30 of 46

The Basics of Software Quality Control version: 11

3.2.5.2 Metric

Several metrics can be gathered on the test results. Some examples are given be-
low.

No of open problem reports (PR) after start integration phase

90
80 +
70 +
60 +

50 +
40 + W urgent

O routine

Open PR's

30 + @ very urgent
20 +
10 +

2 3 4 5 6 7 8 9 10 11 12 13 14

Weeknumber

Figure 9 trend of open number of problem reports: purpose: progress on PR’s during development of a product

In the above figure, the found problems after the start of the integration tests of the
system are measured. The trend is looking good because the total number clearly
diminishes and the very urgent and urgent PR’s are down to 0. What are left are the
routine problem reports.

No of defects found per phase

500

400

350 A

300
250
200
150 Product is now
100 one year in
maintenance

50

A ‘ ‘ ‘ ‘ .

Requirements Development Integration Alfa test Beta test Maintenance

Figure 10 Number of problem reports per development phase; purpose: quality of the different phases of development

Above figure also shows a good trend. The number of found PR’s is decreasing in
time. But beware: the last phase (maintenance) is also the final stage of the prod-
uct. If a product stays in the field for 10 years, the number of maintenance PR’s will
increase.

© Process Vision 2007 All rights reserved
Page 31 of 46

©

The Basics of Software Quality Control version: 11

300

250

200
é’ mfeb
g 150] mrt
o
© 100 g apr

50

0 ,_-_l } } ._| } -_| }
QA LS IL SY
Unit

Figure 11 Number of open problem reports per unit per month: purpose: compare unit quality

In the above figure it looks as if the unit LS is of the lowest quality. What happened
here, is that the responsible team of unit RS did not issue a PR for every problem
they found. They just solved it directly in the code. The LS owners did a good job by
consequently issuing PR’s. Line management that saw these figures for the first
time wanted to take measures on the LS unit instead of on the RS unit.

Metrics always have a history or reason behind the data. Find these reasons before
jumping to conclusions.

© Process Vision 2007 All rights reserved
Page 32 of 46

The Basics of Software Quality Control version: 11

3.3 Test phases
Requirements

Acceptance
Tests

—

regression tests
==

)

regression tests
==L

System Tests

System
Integration

regression tests
==

Figure 12 V-model and the several tests

3.3.1 Acceptance test

Why Demonstrate to customer’s satisfaction that system fulfills its original in-
tended purpose. Defects may still be found, but the system should be ro-
bust at this point.

What Formal acceptance of the system. The acceptance test specification is a
contractual document and contains the validation of the user require-
ments (also a contractual document).

Typical questions to be addressed in acceptance tests:

e Can the new software be installed?

e Is the end-user able to understand how to use it effectively?

e [s it reliable, i.e., free of critical defects?

¢ Does it deliver acceptable performance?

e Will it work under “normal production” conditions in the end-
customers environment?

e Can it be configured to meet the end-customers needs?

Evaluate completeness, consistency, and clarity of procedures and

documentation from a user view:
e User-system interface, installation, training, and operations
¢ First meaningful test of user documentation with actual users

When Planned during user requirement definition

© Process Vision 2007 All rights reserved
Page 33 of 46

The Basics of Software Quality Control version: 11

Where
Who
How
3.3.2
Why

What
When
Where

Who

How

3.3.3

Why
What

When

Where

Who

How

3.3.4
Why
What
When
Where

Who
How

Execute in target environment
Responsibility of customer
Only black box technique

System test

Ensure all requirements (functional and non-functional) have been ad-
dressed satisfactorily.

Verify the (software) system requirements
Planned during software requirement definition

If possible in target environment with little or no test programs, but al-
ways in a controlled environment.

Responsibility of the project. Executed by an independent tester (test
group), if possible, involve real end-users.

Only black box technique

System Integration test

Check if unit/subsystem interfaces are implemented correctly.
Verify the (software) subsystem designs (architectural design).
Not just check if system builds correctly.
Check on inter process communication on unit level, e.g.
e file/global data locking
¢ deadlocks on semaphores
e timely handling of critical interrupts
Planned during architectural (software subsystem) design phase.
Let testers participate in project planning on unit development sequence

If possible in target environment with little or no test programs, but al-
ways in a controlled environment.
Responsibility of the project.
Executed by designer or architect or integrator.
Do difficult/risk full parts first (e.g. integrate hardware early)
Decide on integration strategy:
e Big Bang
e Incremental top down/bottom up
e Back-bone: build up essential functions first:
e [/0O (network, display, keyboard) + Database

Backbone can be used as platform for next subsystems to be inte-
grated (incremental development)

Unit test

Ensure all unit requirements have been addressed satisfactorily.
Verify the unit requirements
Planned during unit requirement definition

Most of the time in a simulation environment. If possible, also use al-
ready other units (pre-integration).

Responsibility of the project. Executed by the unit owner.
Only black box technique

© Process Vision 2007 All rights reserved
Page 34 of 46

The Basics of Software Quality Control version: 11

3.3.5

Why
What

When
Where
Who

How

3.3.6

Why
What
When
Where
Who
How

3.3.7
Why

What
When

Where
Who

How

Unit Integration test

Check if module interfaces are implemented correctly.
Verify the unit design.
Check on inter process communication on module level, e.g.
e File/global data locking
e Deadlocks on semaphores
¢ Timely handling of critical interrupts
Planned during unit design phase.
Most of the time in simulated environment with stubs and drivers.
Responsibility of the project.
Executed by module owner together with unit owner.
Only black box technique

Module test

Check if module is implemented correctly.

Check for internal code errors and verify against unit design.
Planned during unit design phase

Always in simulated environment (stubs, drivers and emulators)
Executed by software engineer

Step 1: white box: reach code coverage target

Step 2: black box: check functionality

Regression test
Eliminate undesirable side effects due to software changes (change re-
quests or problem reports)
Ensure (part of) the system still functions during development: ensure a
stable system.
Test changed part and all parts that interact with that changed part.
Done
¢ On periodic basis during development
¢ On interrupt basis during development and maintenance
(after a software change)
Performed on all work-products including the end-product

Execution depends on work-product, e.g. regression test on system level
done by test group

Must be reproducible at all times, input comes from other tests (accep-
tance, system, integration, unit and module). Candidate for automatic
testing.

© Process Vision 2007 All rights reserved
Page 35 of 46

The Basics of Software Quality Control

version: 11

3.4 Automatic testing

Automating tests has some nice advantages:

However, it does not come for free. It takes
time & money to make the automatic tool
environment. Test code or test scripts must
be written or an automatic test tool has to be
customized to let it run on the application.
The automatic tool environment has to be
tested also on bugs!

Possibility to shift (unattended) testing to ‘non working’ hours
Testers are relieved from repetitive proceedings
Test execution gets reproducible

Enabling testers to concentrate on test results instead of execution of tests

A fool

with a

tool is

still a fool only
making

faster

Where is the break-even point?

A rule of thumb says it pays back to

10 times or more during development and maintenance.

disasters

automate if a test is expected to be executed

© Process Vision 2007 All rights reserved

Page 36 of 46

The Basics of Software Quality Control

3.5 Test methods

3.5.1

version: 11

Equivalence partitioning

Looking at all the possible input values, divide them into several classes. The as-
sumption here is that every input value of a particular class acts in the same man-
ner than any other input value from that particular class. So, in theory, it should
be sufficient to take one value out of every class and write a test for it.

Lets look at an example of the testing of the logarithm function log(x).

Log (x) Output Class Id
-5 Invalid 1
0 Invalid 1
0.3 -0.522 2
0.5 -0,301 2
1 0 3
1.3 0.133 3
2 0.301 3
10 1 4
50.5 1.703 4
100 2 S
1000 3 6

Apparently, if this logarithm function must be tested, there is one class for the
negative numbers, one class for the numbers between O and 1, and a class for every
extra digit:

Input Expected output Class Id
Log (-5) Invalid 1
Log (0.5) -0,301 2
Log (1.3) 0.133 3
Log (50.5) 1.703 4
Log (300) 2.477 5
Log (5012) 3.700 6

The above tests are then sufficient for numbers up to 10.000.

Of course, the above example is very simplistic. In real life, a number of input val-
ues exist that must be combined to get one or more output values. And not every
input value is so deterministic as the log(x) function. But there is your challenge!

© Process Vision 2007 All rights reserved
Page 37 of 46

The Basics of Software Quality Control version: 11

3.5.2 Boundary value analysis

If all the classes are found, the next step is looking at the boundaries of these
classes. The deeper thought behind that is, that many defects in programming oc-
cur at boundaries. Next the tests for the values are written:

e Just below the boundary
e Just above the boundary
e Exactly on the boundary

To get back to the previous log(x) example:

Input Boundary
Log (-0.0001) Just below
Log (0.000) Exactly on
Log (0.00001) Just above
Log (0.99999) Just below
Log (1.0000) Exactly on
Log (1.00001) Just above
................ etcetera

3.5.3 Scenario

Developers test the products on a functional orientation: particular features are
tested in isolation. E.g. in a word processor, all the options for printing would be
applied, one after the other. Editing options would later get their own set of tests.
This is a technical approach of the system.

End-customers however, use the product on a task orientation. For example, a very
common task or scenario in a word processor is

e open a document

e edit the document

e print the whole document

e edit one page

e print that page

If only the strict requirements are followed on functional basis, the above task will
not be tested. Therefore the requirements should contain scenarios.

In object orientation “use cases” (and instances of use cases called “scenarios”) are
very common. For each scenario a test case is written.

If there are no scenarios in the requirements available, talk to the end-customer or
user of the application, together define the scenarios and let the end-customer write
them down in the requirements.

© Process Vision 2007 All rights reserved
Page 38 of 46

The Basics of Software Quality Control version: 11

3.5.4 State transition testing

If state transition diagrams are part of the requirements, the behavior of the com-
ponents regarding these transitions can be tested. A simple example below gives the
2 test cases for testing the 2 states of a light bulb.

Test |Input (event) Initial Output (action) Final
Case State State
1 Push switch Off Light goes on On
2 Push switch On Light goes off Off

3.5.5 Error guessing

Error guessing is not a real technique or method but it can be very helpful.

Suppose there is a system of which is known that it has some weak spots in the
communication between two tasks (due to the fact that this communication is
badly designed: see section 1.3 “What is Design for testability” to really solve this
problem). History shows that most problems always occur in this area. If all this is
known, it is very wise to define a test that focus on this communication part.

A very familiar error guessing method is the monkey test. Sit behind the system
and act like an ignorant user. Push all kind of buttons and keys and start all kind
of applications. The target is to get the system crashed.

The monkey test has one pitfall: it is not very reproducible (or you must log exactly
all actions performed).

© Process Vision 2007 All rights reserved
Page 39 of 46

The Basics of Software Quality Control version: 11

3.5.6 Test attributes for non-functional requirements

Some Non-functional requirement can not be tested with the above methods. Here
are some tips.

3.5.6.1 Capability

e Verify installation procedure
Test minimum and maximum hardware configurations

3.5.6.2 Stability

e Test concurrent events
e E.g. multiple users accessing one application at the same time)
e Test for memory leakage and other problems in long-running applications

3.5.6.3 Resistance to failure

e Recovery from power or hardware failure (warm restart)
Security tests where applicable

3.5.6.4 Compatibility

e Interface with local and remote applications
Interfaces with network services (e.g., transaction processor)

3.5.6.5 Throughput

Peak or average number of transactions (or other events) per unit time that the sys-
tem can handle. Apply workload (usually with a simulator) to show that the system
has the required throughput. Measure response time to ensure that response-time
requirements are met as load increases

© Process Vision 2007 All rights reserved
Page 40 of 46

The Basics of Software Quality Control version: 11

4. APPENDIX A: MORE HISTORICAL SOFTWARE FAIL-
URES

4.1.1.1 AT&T long distance service fails: 1990

Switching errors in AT&T’s call-handling computers caused the company’s long-distance network to
go down for nine hours, the worst of several telephone outages in the history of the system. The melt-
down affected thousands of services and was eventually traced to a single faulty line of code.

4.1.1.2 Patriot missile misses: 1991

The U.S. Patriot missile’s battery was designed to head off Iraqi Scuds during the
Gulf War. But the system also failed to track several incoming Scud missiles, including one that killed
28 U.S. soldiers in a barracks in Dhahran, Saudi Arabia. The problem stemmed from a software error
that put the tracking system off by 0.34 of a second. As Ivars Peterson states in Fatal Defect, the sys-
tem was originally supposed to be operated for only 14 hours at a time. In the Dhahran attack, the
missile battery had been on for 100 hours. This meant that the errors in the system’s clock accumu-
lated to the point that the tracking system no longer functioned. The military had in fact already

found the problem but hadn’t sent the fix in time to prevent the barracks explosion.

4.1.1.3 Pentium chip fails math test: 1994

The concept of bugs entered the mainstream when Professor Thomas Nicely at Lynchburg College in
Virginia discovered that the Pentium chip gave incorrect answers to certain complex equations. In
fact, the bug occurred rarely and affected only a tiny percentage of Intel’s customers. The real problem
was the nonchalant way Intel reacted. “Because we had been marketing the Pentium brand heavily,
there was a bigger brand awareness,” says Richard Dracott, Intel director of marketing. “We didn’t
realize how many people would know about it, and some people were outraged when we said it was no
big deal.” Intel eventually offered to replace the affected chips, which Dracott says cost the company
$450 million. To prove that it had learned from its mistake, Intel then started publishing a list of
known “errata,” or bugs, for all of its chips.

4.1.1.4 New Denver airport misses its opening: 1995

The Denver International Airport was intended to be a state-of-the-art airport, with a complex, com-
puterized baggage-handling system and 5,300 miles of fiber-optic cabling. Unfortunately, bugs in the
baggage system caused suitcases to be chewed up and drove automated baggage carts into walls. The
airport eventually opened 16 months late, $3.2 billion over budget, and with a mainly manual baggage
system.

4.1.1.5 Deregulation of California utilities has to wait: 1998

Two new electrical power agencies charged with deregulating the California power industry have post-
poned their plans by at least three months. The delay will let them debug the software that runs the
new power grid. Consumers and businesses were supposed to be able to choose from some 200 power
suppliers as of January 1, 1998, but time ran out for properly testing the communications system
that links the two new agencies with the power companies. The project was postponed after a seven-
day simulation of the new system revealed serious problems. The delay may cost as much as $90 mil-
lion—much of which may eventually be footed by ratepayers (belastingbetaler), and which may cause
some of the new power suppliers to go into debt or out of business before they even start.

4.1.1.6 Ariane 5, June 1996

The maiden launch of the Ariane 5 rocket blew up 40 seconds from liftoff. The rocket and it’s four sat-
ellites were uninsured and worth $500 million. The proximate cause of the crash was an overflow er-
ror due to an attempt to convert a 64 bit floating point value into a 16 bit integer. This error occurred
in code that was non-functional after liftoff, when the error occurred. The Inquiry Board report pro-
vides details regarding the software failure and the design policies that lead to it. A note in the Risks
Digest indicates that a complete system test would have found the problem but was vetoed for budg-
etary reasons.

In general terms, the Flight Control System of the Ariane S is of a standard design. The attitude of the
launcher and its movements in space are measured by an Inertial Reference System (SRI). It has its
own internal computer, in which angles and velocities are calculated on the basis of information from
a “strap-down” inertial platform, with laser gyros and accelerometers. The data from the SRI are

© Process Vision 2007 All rights reserved
Page 41 of 46

The Basics of Software Quality Control version: 11

transmitted through the databus to the On-Board Computer (OBC), which executes the flight program
and controls the nozzles of the solid boosters and the Vulcain cryogenic engine, via servovalves and
hydraulic actuators.

In order to improve reliability there is considerable redundancy at equipment level. There are two SRIs
operating in parallel, with identical hardware and software. One SRI is active and one is in “hot”
stand-by, and if the OBC detects that the active SRI has failed it immediately switches to the other
one, provided that this unit is functioning properly. Likewise there are two OBCs, and a number of
other units in the Flight Control System are also duplicated.

The design of the Ariane 5 SRI is practically the same as that of an SRI which is presently used on
Ariane 4, particularly as regards the software.

Based on the extensive documentation and data on the Ariane 501 failure made available to the
Board, the following chain of events, their inter-relations and causes have been established, starting
with the destruction of the launcher and tracing back in time towards the primary cause.

The launcher started to disintegrate at about HO + 39 seconds because of high aerodynamic loads due
to an angle of attack of more than 20 degrees that led to separation of the boosters from the main
stage, in turn triggering the self-destruct system of the launcher.

This angle of attack was caused by full nozzle deflections of the solid boosters and the Vulcain main
engine.

These nozzle deflections were commanded by the On-Board Computer (OBC) software on the basis of
data transmitted by the active Inertial Reference System (SRI 2). Part of these data at that time did not
contain proper flight data, but showed a diagnostic bit pattern of the computer of the SRI 2, which
was interpreted as flight data.

The reason why the active SRI 2 did not send correct attitude data was that the unit had declared a
failure due to a software exception.

The OBC could not switch to the back-up SRI 1 because that unit had already ceased to function dur-
ing the previous data cycle (72 milliseconds period) for the same reason as SRI 2.

The internal SRI software exception was caused during execution of a data conversion from 64-bit
floating point to 16-bit signed integer value. The floating point number which was converted had a
value greater than what could be represented by a 16-bit signed integer. This resulted in an Operand
Error. The data conversion instructions (in Ada code) were not protected from causing an Operand
Error, although other conversions of comparable variables in the same place in the code were pro-
tected.

The error occurred in a part of the software that only performs alignment of the strap-down inertial
platform. This software module computes meaningful results only before lift-off. As soon as the
launcher lifts off, this function serves no purpose.

The alignment function is operative for 50 seconds after starting of the Flight Mode of the SRIs which
occurs at HO — 3 seconds for Ariane 5. Consequently, when lift-off occurs, the function continues for
approx. 40 seconds of flight. This time sequence is based on a requirement of Ariane 4 and is not re-
quired for Ariane 5.

The Operand Error occurred due to an unexpected high value of an internal alignment function result
called BH, Horizontal Bias, related to the horizontal velocity sensed by the platform. This value is cal-
culated as an indicator for alignment precision over time.

The value of BH was much higher than expected because the early part of the trajectory of Ariane 5
differs from that of Ariane 4 and results in considerably higher horizontal velocity values.

© Process Vision 2007 All rights reserved
Page 42 of 46

The Basics of Software Quality Control version: 11

S. APPENDIX B: CODE COVERAGE TOOL EXAMPLES

Below some commercial management tools are listed. This information is dated 17
July 2002.

TOOL: CTC++

Vendor: Testwell Oy

Category: Measurement

Description: CTC++ (Test Coverage Analyzer for C/C++) is an instrumentation-based tool for measuring test
coverage and studying the dynamic behaviour of C and C++ programs. CTC++ is available in two packages: 1)
as a host-based tool (“CTC++") and 2) as a tool, which facilitates coverage measuring in target platforms
(“CTC++ Host-Target & Kernelcoverage”). GUI integration to Visual C++.

Date Posted: Jun 28, 2001

TOOL: C-Cover

Vendor: Bullseye Testing Technology

Category: Measurement / Test Execution

Description: Quickly find untested C/C++ code and measure testing completeness. C-Cover increases your test-
ing productivity by showing you the regions of your source code that are not adequately tested. C-Cover meas-
ures condition/decision coverage to help you determine test cases that exercise the decision-making functionality
as well as the computational functionality of your application.

Date Posted: Jun 11, 2001

TOOL: Rational PureCoverage

Vendor: Rational Software

Category: Measurement

Description: Rational PureCoverage is a powerful code coverage analysis tool designed for use by developers
and testers during daily unit tests to increase software quality by preventing untested code from reaching end
users. It is unsurpassed for ease of use and flexibility. With a single click, you can take advantage of an anno-
tated source view that provides line-by-line analysis of either tested or untested code.

Date Posted: Jun 28, 2001

TOOL: TCAT for Java

Vendor: Software Research, Inc.

Category: Web Testing

Description: TCAT for Java is a test coverage analysis tool configured specially for Java applets and for use on
Java-enabled browsers. Developers of animated Web sites can use TCAT for Java to determine that their Java
applets are fully exercised by their test suites — a critical quality verification when Java applets support financial
transactions on the web.

Date Posted: Jul 01, 2000

TOOL: ATTOL Coverage

Vendor: ATTOL Testware SA

Category: Measurement

Description: ATTOL Coverage assesses test efficiency by analyzing C, C++, Ada 83 or 95 code coverage in-
formation. Designed for both native and target platforms, ATTOL Coverage also supports compliance with the
avionics’ DO-178B standard. Source code that has not been covered (including dead code), which test covers
which part of the code, and achieved code coverage information can quickly be visualized. When required for
MC/DC testing, ATTOL Coverage displays information that help optimizing test case desig.

Date Posted: Oct 18, 2000

TOOL: TestWorks/Coverage

Vendor: Software Research, Inc.

Category: Measurement

Description: TestWorks/Coverage measures how much of your code has been tested. This powerful coverage
analyzer does branch and call-pair coverage in a single test run and provides full support for all standard con-
structs and dialects of C and C++, using logical branch (C1), function call (S1) and path class (Ct) coverage.

© Process Vision 2007 All rights reserved
Page 43 of 46

The Basics of Software Quality Control version: 11

With the new recursive descent compiler technology, it’s easy to integrate coverage analysis into your standard
“built-test-edit” process with a simple one-line change.
Date Posted: Jul 01, 2000

TOOL: LDRA Testbed

Vendor: LDRA

Category: Measurement / QA/Quality Mgmt / Reviews & Inspections / Test Development / Test Execution /
Test Management

Description: The two main testing domains of LDRA Testbed are Static and Dynamic Analysis. LDRA Test-
bed’s static analysis provides programming standards enforcement, complexity analysis and data flow analysis.
Data Flow Analysis has been proven to be one of the most cost-effective methods of removing bugs from soft-
ware. Dynamic Analysis involves execution with test data, through an instrumented version of the source code,
to detect defects at run time and provide code coverage measurement. LDRA Testbed rep.

Date Posted: Nov 14, 2000

© Process Vision 2007 All rights reserved
Page 44 of 46

The Basics of Software Quality Control version: 11

6.APPENDIX C: REQUIREMENTS MANAGEMENT TOOLS

Below some widely known commercial management tools are listed.

* Doors (QSS): complex systems
* Requisite Pro (Rational)
* CaliberRm (Starbase): small systems

The link http://www.volere.co.uk/tools.htm contains an updated list of many more
tools.

© Process Vision 2007 All rights reserved
Page 45 of 46

The Basics of Software Quality Control

version: 11

About the author

Willem received his bachelor’s degree in Electronics in 1985
and started working as a software developer. During the first 9
years of his career, he has worked in projects for Océ vd Grin-
ten, Organon Technica, Philips Medical Systems and Draeger
and ended up as project / team leader.
In 1997 he switched towards the quality assurance and process
improvement role in multi-disciplinary projects for companies
such as ASML, Philips Consumer Electronics, Philips Medical
Systems and Centric TSolve.
From 2001 onwards he started his own company Process Vision

and continued to work as quality assurance / process improvement officer.
Next to that he conducts (from 1998 up to now) the software quality control course
at the Technical University of Eindhoven as part of the OOTI program.

Revision History

Date Revision | Comment

18Jan 2002 01 Initial version

29 June 2002 02 Added test methods and test phases.

3 July 2002 03 Added regression tests and automated tests

7 July 2002 04 Added comments from OOTI students 2002

15 May 2003 05 Added design for testability and review product roles
Changed test plan into Integration & Test plan

1 July 2003 06 Added comments and explained questions from OOTI students
2003

16 April 2004 07 Prepared for OOTI course 2004; Added risk based testing; state
transition testing and six-sigma results.

1 July 1 2005 08 Prepared for OOTI course 2005

7 August 2006 09 Prepared for OOTI course 2006

06 September 10 Prepared for OOTI course 2007

2006

23 July 2007 11 Small updates for OOTI course 2007

© Process Vision 2007 All rights reserved

Page 46 of 46

